NPS-SW-01-003

NAVAL POSTGRADUATE SCHOOL
Monterey, California

System Engineering and Evolution Decision
Support

Final Progress Report (05/01/1998 — 09/30/2001)

by

Lugqi

September 2001

Approved for public release; distribution is unlimited.

Prepared for: U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

20010904 054

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison
Superintendent

Richard S. Elster

Provost

This report was prepared for U.S. Army Research Office and funded in part by the U.S. Army

Research Office.

This report was prepared by:

Reviewed by:

Lugqi N
Director, Software Engineering
Automation Center

oAy

Lugi e v

Professor, Computer Science

Released by:

s

D. W. Netzer
Associate Provost and
Dean of Research

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pro_;ect (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
09/30/2001 Final Progress Report
05/01/1998 — 09/30/2001
4. TITLE AND SUBTITLE _ 5. FUNDING NUMBERS
System Engineering and Evolution Decision Support — ’ 38690-MA

Final Progress Report (05/01/1988 — 09/30/2001)

6. AUTHOR(S)

Professor Lugqi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
o . REPORT NUMBER
Software Engineering Automation Center,
Naval Postgraduate School, Monterey, CA 93943 NPS-SW-01-003
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of our effort is to develop a scientific basis for system engineering
automation and decision support. This objective addresses the 1long term goals of
increasing the quality of service provided complex systems while reducing development
risks, costs, and time. Our work focused on decision support for designing operations of
complex modular systems that can include embedded software. Emphasis areas included
engineering automation capabilities in the areas of design modifications, design records,
reuse, and automatic generation of design representations such as real—-time schedules and

software.

14. SUBJECT TERMS 15. NUMBER OF PAGES

System Engineering, Decision Support, Evolution, Concurrent Engineering

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

Table of Contents
I. FINAL PROGRESS REPORTcoeoirreteirreereeeiesessssessesenesessesasssasssssessessassessssasanns 1
1. Statement of the Problem Studied.............coceeirieiriieneeeereertecentreesesrecere s esre s 1
2. Summary of Important RESUILSccciiieiererieeeeeeecrrr et eee e eve e sv s e 1
3. List Of PUDHCALIONSoeueieueneeneeiireneeniesenrereenesensestensesseseesessossasseresssessensensessessessosassessens 4
4. ScIentific PErSONINE]covvveiiirieiirire ettt see st see e s e s se st srsasnasessnassenss 8
5. RepOTt Of INVENLIONScoviuiiieerieiinriereeeeenirtereeeesaeeeestesteesesessvessesssessasssansessasssessessensans 9
6. TeChNOlOgY TTaNSTET......cccoviivriirtirieteececeec et esreeseeseeesaeseesseesasesueessnesssesasessnenns 10
IT. APPENDICES. ...ttt eeeestentesen e tesessesseseees e s e saesesssssesesee s eseemes RS 14
1. “Visual Meta-Programming Notation” by M. Auguston........ccccceeceevveerueervveesvesennne 15
2. “A Software Agent Framework for Distributed Applications”, by J. Ge, B. Kin and
V. BEIZINS «eveeeiveciieienreieereeteteseniessesseeesatsasesseesesstesessesanesseseesntssssosesssasseensenasens 27
3. “JAVA Wrappers for Automated Interoperability” by N. Cheng, V. Berzins, Luqi
and S. BhattaCharyac.cceceeerreerieeceeieenceesceeesieesseeeesseesnesneessesssesssesssnesssessasssens 33
4. “Computer Aided Prototyping in a Distributed Environment” by J. Ge, V. Berzins
AN LUGT ettt s et e et eee e s st e e s e s e st s e st neesans 53
5. “Subclassing Errors, OOP & Practically Checkable Rules to Prevent Them” by O.
KISELYOV ..ttt r st ae e e b e sesa e aesanens 59
6. “The Use of Computer-Aided Prototyping for Reengineering Legacy Software” by
Lugqi, V. Berzins and M. Shingccceoevoveeereneeninireecnetecrcienecseeneeseessecneenenas 69
7. “DCAPS - Architecture for Distributed Computer Aided Prototyping System” by
Lugqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant and B. Kin.................. 81
“Intelligent Software Decoys” by J. Michael and R. Riehle............cccceccrenunnennenee 87
9. “Enhancements and Extensions of Formal Models for Risk Assessment in Software
Projects” by M. Murrah, C. Johnson and Lugicccceceeveeverrerrernienrernecreeneersesseraneas 95
10. “A Unified Approach for the Integration of Distributed Heterogeneous Software
Components” by R. Raje, M. Auguston, B. Bryant, A. Olson and C. Burt............ 102
11. “Optimization of Distributed Object-Oriented Servers” by W. Ray and
V. BEIZINS ittt receeesceecsteese et sseesseessesases e senaessessasasasesseasssesonenns 113
12. “Use of Object Oriented Model for Interoperability Wrapper-Based Translator for

Resolving Representational Differences between Heterogeneous Systems” by
P. Young, V. Berzins, J. Ge and LUuqi........ccccceetmrernicrinsinininiienrenceceeenecsinenneene 123

Final Progress Report

System Engineering and Evolution Decision Support

5/1/1998 - 9/30/2001

Lugqi
Statement of the Problem Studied:

The objective of our research is to develop an integrated set of formal
models and methods for system engineering automation. These results
will enable building decision support tools for concurrent engineering.
Our research addresses complex modular systems with embedded control
software and real-time requirements.

Summary of Important Results:

We focused on automation of design activities that appear in an
evolutionary approach to system development. Decision support for
design synthesis, reuse and evolution is emphasized. This research
extended recently developed formal methods in system engineering to
construct a cohesive set of formal models. These models are used to
create and to connect automated processes for computer aided
prototyping, requirements validation, and design synthesis.
Mathematical models for implementing a set of automated and integrated
engineering automation tools were also developed. Our work combined

very-high-level specification abstractions and concepts with: (1)
formal real-time models, (2) automated management of system design data
and human resources, (3) design transformations, (4) change merging,

(5} automated retrieval of reusable system design components, and (6)
automated schedule construction. We have created automated methods for:

(1) generating real-time control programs, (2) generating simulations
of subsystems, and (3) coordinating concurrent work by engineering
teams. Our work will ensure design consistency and alleviate

communication difficulties.

The significance of our work is to:

- improve system effectiveness and flexibility,
- increase engineering productivity, and

- reduce system maintenance costs.

This was achieved by providing a higher level of engineering automation
coupled directly with requirements validation facilities. Our work will
broaden the scope of engineering decision support to include concurrent
whole-system engineering, requirement determination, and system
evolution. Automated decision support will ensure system quality by
decreasing the human effort required. This, in turn, will minimize the
incidence of human error. The trial use of operational system
prototypes linked with software simulations of selected subsystems
enables users to provide feedback for validation and refinement of
system requirements prior to detailed design. Maintenance costs can be

minimized by reducing the need to repair requirement errors after
system deployment. We provided methods for process and system re-
engineering at minimal cost. This was achieved by: (1) regenerating new
variations of designs from high-level decisions, (2) combining changes,
and (3) propagating the consequences of design modifications. These
engineering capabilities will enable the Army to improve and integrate
its complex systems with reduced costs. Improved systems can reduce
Army manpower needs while strengthening information warfare
capabilities.

Specific tasks accomplished include:
(1) Formal models, architecture and tools for software evolution

We developed a new relational hypergraph model, architecture and
tools for the computer-aided software evolution process. The new
model provides an integrated framework for integrating software
evolution activities with configuration control, maintaining the
consistency of an evolving system, and organizing and coordinating
the activities involved in the evolution of large systems. The
model also serves as the basis for organizing the repository of
configurations [6-8, 10-12]. The effectiveness of the model was
illustrated via a case study involving C4I systems evolution [9].

(2) Formal model for software project risk assessment

We developed formal risk assessment models for the evolutionary
software process, and methods and tools to assess the risk and the
duration of software projects automatically based on measurements
(requirements volatility, production team efficiency, and product
complexity) that can be obtained early in the development process.
The effectiveness of the models was validated by comparing the
results of the models against data collected from 3 large real
projects and 16 simulated projects [25, 29-32, 37].

(3) Architectures and automated retrieval methods for software reuse

We developed formal models and methods to automate the search and
retrieval of software components from software reuse repositories
[12, 23-24]. We also developed models to support reuse in product
line approach [27-28].

(4) The use of Computer Aided Prototyping in Software Re-engineering

We studied the effective wuse of computer-aided prototyping
techniques for re-engineering 1legacy software via a case study
involving the development an object-oriented modular architecture
for the existing US Army Janus(A) combat simulation system, and
validating the architecture via an executable prototype using the
Computer Aided Prototyping System (CAPS). The research showed that
prototyping can be a valuable aid in re-engineering of legacy
systems, particularly in cases where radical changes to system
conceptualization and software structure are needed ([16-18, 36].

(5) Automation support for distributed heterogeneous systems
engineering

(6)

(7)

We investigated models and methods for solving the integration and
interoperability problems in component -based distributed
heterogeneous systems development.

Our work resulted in models and languages for specifying the
architecture of distributed heterogeneous systems and components
[2-3, 33, 35, 40], as well as technologies to automate the
integration of distributed heterogeneous software component via the
automatic generation of glue and wrapper from specification [19-22,

26, 34, 37]}.

We developed an object-oriented model for an interoperability
wrapper -based translator to resolve the representational
differences between heterogeneous systems, an integrated
development environment for users to create such models [43],
methods for determining object correspondence during system
integration, and the use of the Extensive Markup Language (XML) as
a means for establishing interoperability between multiple DoD

databases.

We also developed techniques for maximizing the network
infrastructure [1] and providing decision support for optimizing
distributed object servers utilization [41], as well as the use
software decoys to improve the security of distributed
heterogeneous systems [38].

Formal models for Technology Transition .

We worked with the US Army TACOM to develop formal models and
methods to assess the maturity/risk of emerging software
technologies and to assist managers to size the software technology

infrastructure [42].
Technology transfer via Software Engineering education

To allow corporate and Department of Defense (DoD) software leaders
and practitioners to effectively utilize the technology available
to them, we developed two Software Engineering graduate degree
programs to address the issues and needs unique to DoD software
development. The Software Engineering program at the Naval
Postgraduate School offers M.S. and Ph.D. degrees in Software
Engineering to both in-residence and distance learning students, to
equip software leaders and practitioners with the tools needed to
achieve information superiority. The Ph.D. Program is the first-
ever doctoral program in Software Engineering. It is designed to
satisfy the great and growing demand within the DoD for Ph.D. level
leadership to direct software research and development projects and
to develop policies regarding software requirements and processes
for design, evolution, reuse and management [4].

List of Publications:

1998

1.

1999

10.

11.

12.

M. Dabose and Luqi, "Autonomous Agents Design for Digital
Network Maximization in Joint C4I System", Proceedings of
Modeling and Simulation of Microsystems, Semiconductors, Sensors
and Actuators Conference, Santa Clara, California, April 6-8,
1998.

Lugi, C. Chang, H. Zhu, "Specifications in Software
Prototyping", Journal of Systems and Software, Vol. 42, No. 2,
Aug. 1998, pp. 150-177.

Luqi, "Formal Models and Prototyping", Proceedings of
Requirements Targeting Software and Systems Engineering
Workshop, Munchen, Germany, April, 1998.

M. Shing, V. Berzins, Lugi, M. Holden, and C. Eagle, "Master of
Science in Software Engineering via Distance Learning”,
Proceedings Ada Software Engineering and Education Symposium,
Monterey, California, July 27-30 1998. |

D. Zhang and Lugi, "The Pacific Rim Process Engineering
Research", Proceedings of Asia Pacific Forum on Software
Engineering of the International Conference on Software
Engineering, Kyoto, Japan, April 21, 1998.

M. Harn, V. Berzins and Lugi, “Software Evolution via Reusable

Architecture”, Proceedings of 1999 IEEE Conference and Workshop
on Engineering of Computer-Based Systems, Nashville, Tennessee,
7-12 March 1999, pp. 11-17.

M. Harn, V. Berzins and Lugi, “Computer-Aided Software Evolution
Based on Inferred Dependency”, Proceedings of the Conference on
Advanced Information Systems Engineering: 6th Doctoral
Consortium, Heidelberg, Germany, 14-15 June 1999.

M. Harn, V. Berzins and Lugi, “A Dependency Computing Model for
Software Evolution”, Proceedings of the 1lth International
Conference on Software and Knowledge Engineering,
Kaiserslautern, Germany, 17-19 June 19399, pp. 278-282.

M. Harn, V. Berzins and Lugi, “Evolution of C4I Systems”,
Proceedings of the 1999 Command and Control Research and
Technology Symposium, United States Naval War College, Newport,
Rhode Island, 20 June - 1 July 1999.

M. Harn, V. Berzins and Lugi, “Computer-Aided Software Evolution
Based on a Formal Model”, Proceedings of the 13th International
Conference on Systems Engineering, Las Vegas, Nevada, 9-12
August 1999, pp. 55-60.

M. Harn, V. Berzins and Lugi, “A Formal Model for Software
Evolution”, Proceedings of the 3rd International Conference on

13.

14.

15.

16.

17.

1s.

20.

21.

22.

Computational Intelligence and Multimedia Applications, New
Delhi, India, 23-26 September 1999, pp. 143-147.

M. Harn, V. Berzins and Lugi, “Software Evolution Process via a
Relational Hypergraph Model”, Proceedings of the IEEE/IEEJ/JSAI
International Conference on Intelligent Transportation Systems,
Tokyo, Japan, 5-8 October 1999.

Lugi and J. Guo, "Toward Automated Retrieval for a Software
Component Repository", Proceedings of the International
Conference and Workshop on the Engineering of Computer Based
Systems (ECBS‘’99), Nashville, Tennessee, 7-12 March 1999, pp.
99-105.

Lugi, “Software Engineering to our Planning Horizon”, Electronic
Notes in Theoretical Computer Science, Elsivier Science, 1999.

Lugi, “Engineering Automation for Computer Based Systems”,
Electronic Notes in Theoretical Computer Science, Elsivier
Science, 1999.

M. Shing, Lugi, V. Berzins, M. Saluto and J. Williams,
“Architectural Re-engineering of Janus using Object Modeling and
Rapid Prototyping”, Proceedings of the 10th IEEE International
Workshop on Rapid System Prototyping, Florida, 16-18 June 1999,
pp. 210-221.

V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams,
“Architectural Re-engineering of Janus using Object Modeling and
Rapid Prototyping”, Design Automation for Embedded Systems,
5(3/4), August 2000, pp.251-263.

V. Berzins, M. Shing, Lugi, M. Saluto, and J. Williams, “Object-
Oriented Modular Architecture for Ground Combat Simulation”,
Proceedings of the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA,
June 26-28, 2000.

V. Berzins, “Static Analysis for Program Generation Templates”,
Proceedings of the 7th Monterey Workshop "Modeling Software
System Structures in a Fastly Moving Scenario”, Santa Margherita
Ligure, Italy, June 13-16, 2000. Also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

N. Cheng, V. Berzins, Lugi and S. Bhattacharya, “JAVA Wrappers
for Automated Interoperability”, Lecture Notes in Computer
Science, Vol. 1966, Springer-Verlag, 2000, pp 45-64.

J. Ge, V. Berzins and M. Shing, “An Agent-Based, Distributed
Prototyping System for Software Interoperability Study”,
Proceedings of the 13th International Conference on Computer
Applications in Industry and Engineering of the International
Society for Computers and Their Applications, Honolulu, HI, USA,
November 1-3, 2000, pp. 224-227.

23.

24.

25,

26.

27.

28.

29.

30.

31.

32.

J. Ge, V. Berzins and Lugi, “Computer Aided Prototyping in a
Distributed Environment”, Proceedings of the International ICSC
Congress on Intelligent Systems & Applications (ISA'2000),
University of Wollongong, Australia, December 11-15, 2000.

J. Guo and Lugi, “Reuse and Re-engineering of Legacy Systems”,
Proceedings of the 5th World Conference on Integrated Design &
Process Technology, Dallas, TX, June 4-8,2000.

J. Guo, and Lugi, “A Survey of Software Reuse Repositories”,
Proceedings of the 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (IEEE ECBS
-2000), Edinburgh, Scotland, UK, April 6-7, 2000.

Iugi and J.C. Nogueira, “A Risk Assessment Model for
Evolutionary Software Projects”, Proceedings of the 7th Monterey
Workshop "Modeling Software System Structures in a Fastly Moving
Scenario", Santa Margherita Ligure, Italy, June 13-16, 2000.
Also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

Lugi, V. Berzins, M. Shing, R. Riehle and J.C. Nogueira,
“Evolutionary Computer Aided Prototyping System (CAPS)”,
Proceedings of the TOOLS USA 2000 Conference, Santa Barbara, CA,
July 30-August 3, 2000.

N. Nada, Luqgi, D. Rine and K. Jaber, “Product Line Stakeholder
Viewpoint and Validation Models”, Proceedings of the Workshop on
Software Product Lines: Economics, Architectures, and
Implications, The 22nd Internmational Conference on Software
Engineering (ICSE2000), Limerick, Ireland, June 4-11, 2000.

N. Nada, Lugi, D. Rine and E. Damiani, “A Knowledge-Based System
for Software Reuse Technology Practices”, Proceedings of the
Third International Workshop on Intelligent Software Engineering
(WISE3), The 22nd International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, June 4-11, 2000.

J.C. Nogueira, Lugi and V. Berzins, “Risk Assessment in Software
Requirement Engineering”, Proceedings of the 5th World
Conference on Integrated Design & Process Technology, Dallas,
TX, June 4-8,2000.

J.C. Nogueira, C. Jones and Lugi, “Surfing the Edge of Chaos:
Applications to Software Engineering”, Proceedings of the 2000
Command and Control Research and Technology Symposium, Monterey,
CA, June 26-28, 2000.

J.C. Nogueira, Lugi, V. Berzins and N. Nada, “A Formal Risk
Assessment Model for Software Evolution”, Proceedings of the 2nd
International Workshop on Economics-Driven Software Engineering
Research (EDSER-2), The 22nd International Conference on
Software Engineering (ICSE2000), Limerick, Ireland, June 4-11,
2000.

33.

2001

33.

34.

35.

36.

37.

38.

39.

40.

J.C. Nogueira, Lugi and S. Bhattacharya, “A Risk Assessment
Model for Software Prototyping Projects”, Proceedings of the
l1lth IEEE International Workshop on Rapid System Prototyping,
Paris, France, June 21-23, 2000.

M. Auguston, “Visual Meta-Programming Notation”, Proceedings of
the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001),
Monterey, California, June 19-21, 2001.

J. Ge, B. Kin and V. Berzins, “A Software Agent Framework for
Distributed Applications”, Proceedings of the 14th International
Conference on Parallel and Distributed Computing Systems,
Dallas, TX, August 8-10, 2001.

O. Kiselyov, “Subclassing errors, OOP & Practically Checkable
Rules to Prevent Them”, Proceedings of the 8th Monterey Workshop
"Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

Lugi, V. Berzins and M. Shing, “The Use of Computer-Aided
Prototyping for Reengineering Legacy Software”, Proceedings of
the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001),
Monterey, California, June 19-21, 2001.

Lugi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant and B.
Kin, “DCAPS - Architecture for Distributed Computer Aided
Prototyping System”, Proceedings of the 12th IEEE International
Workshop on Rapid System Prototyping (RSP2001), Monterey,
California, June 25-27, 2001, pp. 103-108.

J. Michael and R. Riehle, “Intelligent Software Decoys”,
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

M. Murrah, C. Johnson and Lugi, “Enhancements and Extensions of
Formal Models for Risk Assessment in Software Projects”,
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

R. Raje, M. Auguston, B. Bryant, A. Olson and C. Burt, “A
Unified Approach for the Integration of Distributed
Heterogeneous Software Components”, Proceedings of the 8th
Monterey Workshop "Engineering Automation for Software Intensive
System Integration" (Monterey Workshop 2001), Monterey,
California, June 19-21, 2001.

41. W. Ray and V. Berzins, “Optimization of Distributed Object-
Oriented Servers”, Proceedings of the 8th Monterey Workshop
"Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

42. M. Saboe and Lugi, “A Software Technology Transition Engine”,
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

43. P. Young, V. Berzins, J. Ge and Lugi, “Use of Object Oriented
Model for Interoperability Wrapper-Based Translator for
Resolving Representational Differences between Heterogeneous
Systems”, Proceedings of the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

Scientific Personnel:

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Dr.

Lugi, Professor, NPS

Valdis Berzins, Professor, NPS

Man-Tak Shing, Associate Professor, NPS

Bret Michael, Associate Professor, NPS

Du Zhang, Visiting Professor, NPS

Swapan Bhattacharya, National Research Council Research Associate
Jiang Guo, National Research Council Research Associate

Jun Ge, National Research Council Research Associate

Mikhail Auguston, National Research Council Research Associate
Oleg Kiselyov, National Research Council Research Associate
Barrett Bryant, National Research Council Research Associate
Nabendu Chaki, Visiting Professor, NPS

Bruce C. Shultes, Visiting Assistant Research Professor

J. Kominiak, "Software System Requirements for the Fuel Automation
Subsystem of the Integrated Combat Service Support System (ICS3) Using
the Computer Aided Prototyping System (CAPS)", Master's thesis, NPS,
March 1998.

G. Meckstroth, "A GUI Interface for Reusable Components Storage and
Retrieval in the CAPS Software Base", Master's thesis, NPS, March 1998.

T.

Rambidis, "Security Issues for the Software Evolution Model",

Master's thesis, NPS, March 1998.

J. T. Hirschfelder and Mr. L. M. Nixon, "Re-engineering of a Mission
Critical Satellite Communications Component TD-1271B/U", Master's
thesis, NPS, March 1998.

O. Korkut, "Software Architecture for a Multi-level Real-time System”,
Master's thesis, NPS, September 1998.

Jose Carlos Alves de Almeida, "Software Architecture for Distributed
Real-Time Embedded Systems", Master's thesis, NPS, September 1998.

Mickey Harn, "Computer-Aided Software Evolution Based on Inferred
Dependencies", PhD's dissertation, NPS, December 1999.

Hanh Le, “Design of A Persistence Server for The Relational Hypergraph
Model”, Master thesis, NPS, December 1999.

Eric Matsuo, “Risk Assessment in Incremental Software Development”,
Master thesis, NPS, December 1999.

J.C. Nogueira, “A Formal Model for Risk Assessment in Software
Projects”, Doctoral Dissertation, Software Engineering, NPS, September

2000.

Boon Kwang Kin, “A Simple Software Agents Framework for Building
Distributed Applications”, Master thesis, NPS, March 2001.

Eddie Davis, “Evaluation of the Extensive Markup Language (XML) as a
Means for Establishing Interoperability Between Multiple DoD
Databases”, Master thesis, NPS, June 2001.

Robert Halle, “Extensible Markup Language (XML) Based Analysis and
Comparison of Heterogeneous Databases”, Master thesis, NPS, June 2001.

Craig Johnson and Robert Piirainen, “Application of the Nogueira Risk
Assessment Model to Real-Time Embedded Software Projects”, Master

thesis, NPS, June 2001.

Wayne Mandak and Charles Stowell, “Dynamic Assembly for System
Adaptability Dependability and Assurance (DASADA) Project Analysis”,
Master thesis, NPS, June 2001.

Paul Nelson, “A Requirements Specification of Modifications to the
Functional Description of the Mission Space Web-based Tool”, Master
thesis, NPS, June 2001.

Randolph Pugh, “"Methods for Determining Object Correspondence during
System Integration”, Master thesis, NPS, June 2001.

William Windhurst, “An Application of Role-Based Access Control in an
Organizational Software Process Knowledge Base”, Master thesis, NPS,

June 2001.

Report of Inventions: N/A

Technology Transfer:
1998

B.C. Shultes, "Using Semi-Markov and Semi-Stationary Models to Speed-Up
Rare Event Simulations" presented at the INFORMS National Meeting in
Seattle, October 1998.

B.C. Shultes, "The Balanced Likelihood Ratio Method for Estimating
Performance Measures of Highly Reliable Systems" presented at the 1998
Winter Simulation Conference in Washington DC, December 1998.

Luqgi, Panel Chair, Process Engineering, International Conference on
Software Engineering, was held in Kyoto, Japan, April, 1998.

Lugi, Advisory Committee, Quality Week, International Conference, was
held in San Francisco, April, 1998.

Lugi, Program Committee, 10th International Conference on Software
Engineering and Knowledge Engineering (SEKE 98), was held in San
Francisco, June 18-20 1998.

Lugi, Chair, Program Committee, 1998 ARO/ONR/NSF/DARPA Monterey
Workshop on Engineering Automation for Computer Based Systems, held in
Carmel, CA, October 26-29 1998,

1999

M. Shing, “Architectural Re-engineering of Janus using Object Modeling
and Rapid Prototyping” presented at the 10th IEEE International
Workshop on Rapid System Prototyping, Florida, June 1999.

M. Harn, “Software Evolution via Reusable Architecture,” presented at
the 1999 IEEE Conference and Workshop on Engineering of Computer-Based
Systems, Nashville, Tennessee, March 7-12, 1999, pp. 11-17.

M. Harn, “Computer-Aided Software Evolution Based on Inferred
Dependency, ” presented at the Conference on Advanced Information
Systems Engineering: 6th Doctoral Consortium, Heidelberg, Germany, June
14-15, 1959.

M. Harn, “A Dependency Computing Model for Software Evolution,”
presented at the Eleventh International Conference on Software and
Knowledge Engineering, Kaiserslautern, Germany, June 17-19, 1999.

M. Harn, “Evolution of C4I Systems,” presented at the 1999 Command and
Control Research and Technology Symposium, United States Naval War
College, Newport, Rhode Island, June 29 - July 1, 1999.

M. Harn, “Computer-Aided Software Evolution Based on a Formal Model,”
presented at the thirteenth International Conference on Systems
Engineering, Las Vegas, Nevada, August 5-12, 1999.

M. Harn, “A Formal Model for Software Evolution”, presented at the 3rd

International Conference on Computational Intelligence and Multimedia
Applications,” New Delhi, India, September 23-26, 1999.

10

A. Mori, “Software Evolution Process via a Relational Hypergraph
Model,” presented at the IEEE/IEEJ/JSAI International Conference on
Intelligent Transportation Systems, Tokyo, Japan, October 5-8, 1999.

Jiang Guo, "Toward Automated Retrieval for a Software Component
Repository", presented at the International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS), Nashville, USA, March
7-12, 1989.

2000

V. Berzins, member, Steering Committee, 2000 ARO/NSF/CNR Monterey
Workshop on Modeling Software System Structures in a Fastly Moving
Scenario, held in Santa Margherita Ligure, Italy, June 13-16, 2000.

V. Berzins, "Static Analysis for Program Generation Templates",
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a fastly moving scenario", Santa Margherita Ligure,
Italy, June 13-16, 2000.

V. Berzins, "A formal Risk Assessment Model for Software Evolution", in
presented at the 2nd International Workshop on Economics-Driven
Software Engineering Research (EDSER-2), the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland, June

4-11, 2000.

J. Gou, "Reuse and Re-engineering of Legacy Systems", presented at the
5th World Conference on Integrated Design & Process Technology, Dallas,.
TX, June 4-8,2000.

Lugi, "A Survey of Software Reuse Repositories", presented at the 7th
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (IEEE ECBS 2000), Edinburgh, Scotland, UK, April
6-7, 2000.

Lugi, "A Risk Assessment Model for Evolutionary Software Projects",
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a Fastly Moving Scenario", Santa Margherita Ligure,
Italy, June 13-16, 2000.

Lugi, "A Risk Assessment Model for Software Prototyping Projects",
presented at the 11lth IEEE International Workshop on Rapid System
Prototyping, Paris, France, June 21-23, 2000.

Lugi, Chair of the Program Committee, the 11lth IEEE Intermnational
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

Luqgi, Co-Chair, Program Committee, 2000 ARO/NSF/CNR Monterey Workshop
on Modeling Software System Structures in a Fastly Moving Scenario,
held in Santa Margherita Ligure, Italy, June 13-16, 2000.

J.C. Nogueira, "Risk Assessment in Software Requirement Engineering",
presented at the 5th World Conference on Integrated Design & Process
Technology, Dallas, TX, June 4-8,2000.

11

J.C. Nogueira, "Surfing the Edge of Chaos: Applications to Software
Engineering", presented at the 2000 Command and Control Research and
Technology Symposium, Monterey, CA, June 26-28, 2000.

R. Riehle, "Evolutionary Computer Aided Prototyping System (CAPS)",
presented at the TOOLS USA 2000 Conference, Santa Barbara, CA, July 30-
August 3, 2000.

R. Riehle, chair of the Tutorial Committee, the TOOLS USA 2000
Conference, Santa Barbara, CA, July 30-August 3, 2000.

M. Shing, "Object-Oriented Modular Architecture for Ground Combat
Simulation", presented at the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA, June 26-
28, 2000.

M. Shing, member of the Program Committee, the 11th IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

2001

M. Auguston, V. Berzins, S. Bhattacharya, J. Ge, O. Kiselyov, D. Zhang,
members of the Program Committee, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

M. Auguston, member of the Program Committee, the 12th IEEE
International Workshop on Rapid System Prototyping (RSP2001), Monterey,
California, June 25-27, 2001. :

M. Auguston, “Visual Meta-Programming Notation”, presented at the 8th
Monterey Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001}, Monterey, Califormia, June 19-
21, 2001.

J. Ge, “A Software Agent Framework for Distributed Applications”,
presented at the 14th International Conference on Parallel and
Distributed Computing Systems, Dallas, TX, August 8-10, 2001.

0. Kiselyov, “Subclassing Errors, OOP & Practically Checkable Rules to
Prevent Them”, presented at the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

Luqgi, co-chair of the Program Committee, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 15-21, 2001.

Lugi, General Co-Chair, the 12th IEEE International Workshop on Rapid
System Prototyping (RSP2001), Monterey, California, June 25-27, 2001.

J. Michael, “Intelligent Software Decoys”, presented at the 8th
Monterey Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

12

M. Murrah, “Enhancements and Extensions of Formal Models for Risk
Assessment in Software Projects”, presented at the 8th Monterey
Workshop "Engineering Automation for Software Intensive System
Integration” (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

R. Raje, “A Unified Approach for the Integration of Distributed
Heterogeneous Software Components”, presented at the 8th Monterey
Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

W. Ray “Optimization of Distributed Object-Oriented Servers”, presented
at the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001), Monterey,
California, June 19-21, 2001.

M. Saboe, “A Software Technology Transition Engine”, presented at the
8th Monterey Workshop "Engineering Automation for Software Intensive
System Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

M. Shing, Chair, Local Arrangement, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

M. Shing, Chair, Local Organization, the 12th IEEE International
Workshop on Rapid System Prototyping (RSP2001), Monterey, California,
June 25-27, 2001.

M. Shing, “The Use of Computer-Aided Prototyping for Re-engineering
Legacy Software”, presented at the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

M. Shing, “DCAPS - Architecture for Distributed Computer Aided
Prototyping System”, presented at the 12th IEEE International Workshop
on Rapid System Prototyping (RSP2001), Monterey, California, June 25-
27, 2001.

P. Young, “Use of Object Oriented Model for Interoperability Wrapper-
Based Translator for Resolving Representational Differences between
Heterogeneous Systems”, presented at the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration”
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

13

APPENDICES

FY2001 Publications

14

Visual Meta-Programming Notation’

Mikhail Auguston’
Department of Computer Science

Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943 USA
auguston@cs.nps.navy.mil

Abstract

This paper describes a draft of visual notation for meta-programming. The main suggestions of this work include special-
ized data structures (lists, tuples, trees), data item associations that provide for creation of arbitrary graphs, visualization
of data structures and data flows, graphical notation for pattern matching (list, tuple, and tree patterns, graphical notation
for context free grammars, streams), encapsulation means for hierarchical rules design, two-dimensional data-flow dia-
grams for rules , visual control constructs for conditionals and iteration, default mapping rules to reduce real-estate re-
quirements for diagrams, and dynamic data attributes.

Two-dimensional data flow diagrams improve readability of a meta-program. The abstract syntax type definitions for
common programming languages and related default mappings (parsing and de-parsing) provide for a practically feasible
reuse of those components.

1 Introduction and objectives

Meta-programs are programs manipulating other programs. Typical applications include compilers, interpreters, source
code static analyzers and checkers, program generators, and pretty-printers. Domain-specific language implementation and
rapidly evolving generative programming [9] are the latest examples of developments in this domain. The complexity and
sophistication of meta-programs may be quite significant, so the readability and maintainability become an issue.

Compiler and generator design is a domain that has been studied extensively. There is a pretty good understanding of
what to do and how to do it, especially for front-end design, and a lot of domain-specific software design templates are ac-
curnulated in literature. The following domain features are among the most common for language processor design.

e Use of context-free grammars to specify syntax and serve as a basis for parser design.

¢ Intermediate representation of the input in the form of an abstract syntax tree. The importance of different tree data
structures is recognized in general for this problem domain.

e Typically, the main components of a language processor are very hierarchical and structured along the structure of data
(recursive descent parser is an excellent example of this feature). In other words, language processors are heavily data-
based applications. ,

o It appears that the most commonly used data structures include trees, lists, stacks, tables, and strings.

e The architecture of a language processor in most cases can be represented as a data flow between components (e.g., the
famous compiler data flow diagram on the page 13 of the “Dragon Book™[1]).

e The notion of an attribute associated with the data item, and attribute dependency and propagation schemes are of a
great relevance (the attribute grammar framework captures some of the essential static checking needs; the data flow
analysis performed for the optimization stage in a compiler may be considered as an attribute propagation over the

program graph).

! This research was supported in part by the U. S. Army Research Office under grant number 40473-MA-SP.
20n leave from New Mexico State University, USA

15

e Tree (and graph) traversal and transformation is a common template for optimization and code generation tasks.

o Pattern matching (e.g., with respect to regular expressions or context-free grammars) may be a useful control structure
for this problem domain.

These considerations and experience with the compiler writing tools RIGAL[2][3], lex and yacc[11], and ELI[10] contrib-
uted to this work. Data-flow paradigm is quite natural for meta-programming domain since it is heavily data dependent,
and consequently, the graphical notation for data-flow diagrams could be appropriate. This should be integrated with visu-
alization of typical data structures, pattern matching, and encapsulation to provide for well-structured, hierarchical pro-
grams. Data-flow diagrams are most commonly used to represent dependencies between data and processes in visual pro-
gramming languages, for instance, in LabVIEW[5] and Prograph[8].

Two-dimensional diagram notation could significantly improve readability of meta-programs. Some of these ideas have
been explored in our previous work{4].

The main suggestions of this work are as follows:
o specialized data structures (lists, tuples, trees),
e data items associations that provide for creation of arbitrary graphs,.
e visualization of data structures and data flows,
¢ graphical notation for pattern matching (list, tuple, and tree patterns; graphical notation for context free grammars and
streams),
e encapsulation means for hierarchical rules design,
s two-dimensional data-flow diagrams for rules,
e visual control constructs for conditionals and iteration,
e default mapping rules to reduce screen real-estate requirements for diagrams,
e dynamic (Last #rule Sattribute) and static (via associations) data attributes,
s data-flow notation that assumes potential parallelism in the data processing,

e abstract syntax type definitions for common programming languages and related default mappings (parsing and de-
parsing) that provide for a practically feasible reuse of those components.

2 Constructs

This paper was not intended to give a complete and precise syntax and semantics of the visual language. At this point it is
rather a notation that will be upgraded to programming language status after the implementation effort is completed. A
(simplified) example of a compiler from a small subset of Lisp (called MicroLisp) to the C language will be used to present
the main ideas. Figures 3~ 7 present several annotated parsing and code generation rules of the MicroLisp to C compiler.
Appendix A contains the MicroLisp context-free grammar and an example of a program.

2.1 Data flow diagrams

Detailed rationale for data-flow diagram notation and a survey of related work can be found in a previous paper[4].
Briefly, a meta-program is rendered as a two-dimensional data flow diagram that visualizes the dependencies between data
and processes. Diagrams actually are similar to the notion of procedure in common programming languages. A diagram
represents a single function called a rule, and rule calls may be recursive. The data-flow diagram supports the possibility of
parallel execution of threads within the rule.

The data-flow paradigm is closely related to the functional programming paradigm [7] and shares with that paradigm ref-
erential transparency and good correspondence between the source code (the diagram) and the order of program execution.

Each diagram represents a single function with several inputs and outputs. At the top of a diagram a signature of a rule
provides the rule name and types of its inputs and outputs. Besides data items, the diagram may also contain control struc-
tures, such as other rule calls, conditional data flow switches, and iterative constructs [4]. All of those constructs are illus-

trated in the MicroLisp examples.

16

The rectangular boxes in our notation denote values, and circles and ovals denote patterns, that could be matched with
data objects.

2.2 Types

Type represents a set of values (or objects). Basic predefined types include chax (characters) and int (integers). There
is also a universal type ANY (which is a super type for any type) and the minimal type NULL (which is a subtype of any
other type and contains a single value Null representing also an empty list or tuple).

Aggregate types are ordered tuples of heterogeneous objects, which are useful for abstract syntax representation, and lists
(sequences of homogeneous objects that could be dynamically augmented). Extended BNF notation may be used to define
tuple types. To a large degree the type system is similar to the type mechanisms in VDM[13] and Refine[12].

Example of a tuple type definition.

prog::= function-def* expression

This establishes that an object of the type prog is a sequence of zero or more objects of the type function-def followed by
an object of the type expression. This could be considered as an abstract syntax representation for the MicroLisp program
level. Notice that ordered sequence of objects of the type function-def is nested within an object of the type prog.

Example of a list type definition.

text :: [char]

There is a predefined list type id:: [char], which stands for a set of character strings that are valid identifiers.

Example of a type definition with several alternatives (union type).

expr :: int | id | simple-expression
This effectively declares that types int and id are subtypes of expr in the scope of this définition.

Appendix B presents some of the type definitions for the MicroLisp example.

2.3 Default mappings

text
prog
C-HeaderFile C-CodeFile
h 4 y
text text

Figure 1. The top level data flow diagram for MicroLisp to C compiler

Certain rules may be declared as default mappings. It means that corresponding rule calls are optionai in the diagrams,
and input and output data boxes may be connected directly. This helps to save some screen real estate and to make diagrams
less crowded and more readable. Typically default mappings may be introduced for text-to-abstract syntax (parsing) and for

abstract syntax-to-text mappings (de-parsing, or abstract syntax-to-concrete syntax mappings).

Yet another kind of default mappings is associated with concatenation operations for tuples and sequences. In fact this is a
composition of parsing and de-parsing default mappings applied in the context of (visualized) concatenation. See MicroLisp

generation rules for examples (Figures 6-7).

17

Definitions of abstract syntax types for common programming languages and related parsing and de-parsing default map-
pings may be valuable assets for reuse.

Default mappings also open the road for “lightweight” inference. For example, suppose that type A is defined as follows:
A::B|C
and there are default mappings B -> D and C -> D, then it is possible to derive a default mapping for A -> D. This example

actually addresses the polymorphism issue in our lightweight type system. Similar inference rules could be developed for
other aspects of type system based on transitivity of subtype relation.

2.4 Associations

Data objects may be associated with other data objects. Each of those objects may have other associations as well. Associa-
tions are not a necessary part of the type definition (although they could be included in the type definition as well) and are
rather optional named attributes of particular objects. Associations may be used to create arbitrary graphs from objects. The
following picture on Figure 2 illustrates the creation of a graph structure via associations from three data objects. Associa-
tion is not symmetric. According to the following diagram object A has been associated with an attribute B via an associa-
tion named ab, object B with C viabec, and Cwith Aviaca. -

Associated objects are retained when the host objects are the source and target in an identical transformation (plain arrow
connecting data boxes of the same type) or are passed as inputs and outputs of rule calls. A special built-in rule #COPY
creates a copy of an object but retains only those components declared in the type definition. Associated objects could be
retrieved by pattern matching. For instance, on the right-hand diagram on Figure 2, object C (belonging to the associations
established in the previous example) may be passed as input, and an access to objects B and A can be obtained via pattern
matching (circles denote object patterns here). Notice that the direction of association arrow indicates the access path from
the host object to the attribute object. The association mechanism may be useful to simulate attribute-grammar-like attribute
propagation in ensembles of objects, to represent collections of objects as graphs, to implement symbol tables (where identi-
fiers may be represented as associations names), and so on.

ca
ca
be

Figure 2. Construction of associations between objects and retrieval of them
using pattern matching

2.5 Patterns and streams

Data object patterns are used to visualize structure of objects in order to provide access to object components and associ- -
ated objects. An object pattern may be placed in any part of the data flow and is matched with the object connected to the

pattern input.

18

If pattern matching is successful the input object is passed downstream. If pattern matching fails, the entire diagram exe-
cution fails, and the diagram sends to its outputs a default value Null, unless the pattern has been provided with the

‘Failed’ output route. See MicroLisp rules in Figures 3-4 for examples.

If a rule’s input is a list, patterns applied to this input may be chained in a sequence (using thick gray arrows) to be ap-
plied consecutively. This pattern sequence consumes as many objects from the stream as it can successfully match. The no-
tion of stream corresponds to the sequence in RIGAL language[2][3], and semantics of pattern matching is derived from
RIGAL’s pattern matching semantics. See MicroLisp parsing rules for example (Figures 3-5).

Rules can create output streams of objects as well.

2.6 States and dynamic attributes

Rule may have states — objects that persist while rule instance is active and can be updated by assignment operators within
the rule or from other rules called from this rule. This mechanism could be actually considered a macro extension for dia-
gram notation when a corresponding state object is passed to the called rules as an additional parameter and returned back
to the callee as an additional output. States have names starting with the § symbol, e.g. $X. The reference to the rule’s #A
state $X has a form Last #A $X. When referred within the rule #A, the prefix Last #A can be dropped. See Figures 4-5 for

examples.
3 Examples of MicroLisp to C compiler rules
The following diagrams present three top level parsing rules and two top level generation rules for MicroLisp -> C com-

piler. They illustrate most of the notations discussed above. Additional annotations provide more specific details and discus-
sion. Those rules are deployed according to the data flow diagram on Figure 1 and default mappings in Appendix B.

3.1 Parsing
The source code of MicroLisp program is represented as a stream of characters. It is assumed that there is a lexical com-.
ponent that filters out comments, spaces, tabs, end-of-line characters from the stream before it is fed to the parsing rules.

19

#program: Stream [char]-> prog, Stream [message]

state $func-list: [id] -- updated by #func-def
sk Failed
message:
"? expected"
$func-list
Svntax err
Func-tab
Syntax err
* prog: /
message: ‘
"Errors func-def expr
detected" oo
v
>
prog:
Null

Figure 3. Parsing rule for the grammar rule
program ::= func-def * ‘?’ expression

Annotations for the rule #program

This rule has a state $func-list which will be gradually updated by the rule #func-def calls (see Figure 4). At the end of
parsing, object $func-list will be added as an attribute (via association with the name Func-tab) to the resulting object of
the type prog. The box containing $func-list has a durnmy input of the type ANY, which is activated when the last pat-
tern #expr terminates with success. This ensures the timing when the state value is picked up for the association opera-
tion. '

The rules #func-def and #expr are used as patterns. If pattern matching encapsulated in these rules is successful, the
rules also are successful and return values, which are used to assemble the return value of the rule #program.

If pattern matching for the pattern *? fails, the entire rule #program also fails and returns object Null, but before it
happens two messages will be sent to the output stream. Markers labeled ‘Syntax err’ are used to prevent a mess with
arrow intersections. ’

A data flow fork denotes duplication of the data item sent to two or more threads.

Nesting boxes and forwarding output of pattern rules of the types func-def and expr inside the resultmg box of the type
prog provide an intuitive visualization for the tuple constructor.

The application of pattern #func-def may be repeated zero or more times (indicated by the ellipsis “***’), and it is syn-
chronized with the tuple constructor (as the box of the type func-def in the resulting prog box is also accompanied by

an ellipsis).

20

#func-def: Stream [char]-> Func-def, Stream [message]
state $param-list: [id] -- used in #expr

/ Failed

rd

message:
_"wrong

function

name"

|:= $param-list

o= Last #program $func-list

Name IN Last
#program $func-list

True

message:
function

name / .
x Func-def: l
) ' >

Ly id

id id expr

defined
twice

Figure 4. Parsing rule for a function definition by a grammar rule
Function-definition ::= *(* DEFINE ‘(" Name Param * ¢)’ Expression ‘)’

Annotations for the rule #func-def

e Built-in rule #Ident matches a character string that is an identifier. When successful, this identifier (an object of the
type id) is input to the conditional data flow switch to check whether the function name is already on the list. If true,
the id item is forwarded to the message output stream. If false, it goes to the resulting tuple constructor.

e A function name is also sent to update state $func-list in the current instance of rule #program. |.:= stands for the op-
eration to append an element to the end of list. This assignment operation updates the state Last #program $func-list.

o The entire sequence of patterns in this rule consumes part of the input stream delegated from the calling rule #program.

e Parameter names are appended to the state variable $param-list. All state variables are mltxahzed by Null, which stands
for empty list in this case. .

21

#expr : Stream [char] -> expr, Stream [message]

e E
. True
Name: Name IN Last

L—"]

v

False

message:
\ 4

not defined

expr p

>

Figure 5. Parsing rule for MicroLisp expression for the rule :
expression::= integer | parameter-name | ‘(' SimpleExpression ‘)’

Annotations for the rule #expr

e A pattern may have several alternatives. The alternatives are applied in order of appearance, if the first alternative
fails, the pattern matching backtracks in the input stream and the next alternative is applied until one of altematives is
successful. If all alternatives fail, the entire alternative pattern also fails.

e The built-in rules #Number and #Ident, when successful, return objects of the types int and id, correspondingly.
Since the type expr is defined as a supertype for int and id, the data flow to the resulting object of the type expr is
consistent.

3.2 Code generation

Code generation rules take as input a MicroLisp abstract syntax object and output C abstract syntax objects. Target code
template representation in the diagrams is based on default mappings for C abstract and concrete syntax and visual repre-
sentation of append operation as nested boxes.

Annotations for the rule #gen-program

22

#gen-program: prog -> C-HeaderFile, C-CodeFile

C-HeaderFile:

(‘ \ #include <stdio.h>
prog:

—»| C-finc-prototype

C-CodeFile:
#include “lisp.h”

C-func-definition

int main(){
printf{ “The result is:%d\n”,

J T

s)3}

N

Figure 6. Generation rule for the MicroLisp program level

o The input is of the type prog (abstract syntax object for MicroLisp) and a pattern for this object provides an access
to the component retrieval. Since func-def components may be repeated zero or more times, the ellipsis in the pat-
tern represents the iterative traversal.

e The iteration of the input is synchronized with the iterative generation of objects in two outputs. The
transformations itself are carried by default mappings func-def -> C-func-prototype and func-def -
> C-func-definition. The rule #gen-function-prototype in the next example gives the algorithm for the first
of these default mappings. Since the template provides particular concrete syntax for parts of the C code, those text
segments will be stored with corresponding C abstract syntax objects. The resulting parse tree for include and
printf will contain objects of the type id and text-string that hold values, such as “int”, “printf”, and other. These
concrete syntax values are retrieved by default mappings when pretty-printing corresponding C abstract objects.

e The rule #gen-program constructs the target C code in the abstract syntax form. The mapping from abstract syntax
to the text will be done according to the main diagram in Figure 1 by corresponding de-parsing default mappings
for the C language. Both the abstract syntax definitions and default parsing and de-parsing mappings for the C
language may be reused for any other meta-program that uses C as a target.

Annotations for the rule #gen-function-prototype

* This rule provides the flavor of hierarchical structure of generation templates.

o The first appearance of the string “int” in the target object C-func-prototype object will be converted by the C default
parsing mapping into object C-type and the string “int” will be associated with it as a value. The same is true also for
the iteration of “int” in the parameter list. '

e Box around the second instance of “int” is needed to indicate the binding with the iteration of id in the source object
func-def.

#gen-function-prototype: func-def -> C-func-prototype

Cunc—def : C-func~prototype:
int
id
————p id (
—>
-\ > “int” , ,
eee o
XN J);

Figure 7. Generation rule for C function prototype.

e Parentheses, semicolon, and comma (as a separator between iterated elements; in the graphical interface there should
be a way to indicate that comma is related to the iteration ellipsis) in the target object are optional, and if present, will
be consumed by corresponding C default parsing mappings. The resulting object is still an abstract syntax object.

4 Preliminary conclusions

This paper presents very preliminary results on the visual notation for meta-programming. Work continues on the lan-
guage itself, case studies, and implementation issues. At the moment of this writing the interpreter for the core of data-flow
language is already implemented, and work is in progress on the graphical editor and advanced features like default map-

pings

and tuple pattern matching. In it current form, the concepts presented may be used as a useful supplement to the

meta-program design documentation. We expect the advantages of this approach to be as follows.

Visualization of data and data flow provides for better readability and uncovers parallelism in data processing.
The tuple type provides for a precise, disciplined, and flexible way to define abstract syntax.

The simple association mechanism provides a natural way to introduce data attributes and opens the road for proc-
essing of arbitrary graphs without cluttering the language with additional means.

Pattern matching notation covers in a uniform way data objects, rule calls, associations, and extended BNF nota-
tion for parsing. :

24

* The language provides for systematic and consistent correspondence between constructors and patterns.

e The dynamic attributes (states) are actually macro extensions of pure functional paradigm (may be considered as
additional inputs and outputs for diagrams referring to the states), provide for more efficiency, and make the data
flow diagram simpler and less cluttered.

o Default mappings may be very convenient for generatlon templates, provide basis for lightweight type inference,
and rule reuse.

¢ Data streams and patterns give a flexible and expressive framework for parsing rules supporting extended BNF no-
tation, support reasonable and informative parsing error messages.

e Control mechanism, such as data flow switch, iteration and recursion fit well with data-flow notation and provide
for transparent and expressive language to define different kinds of meta-programming algorithms.

References

[1] A.Aho, R.Sethi, J.Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986

[2] M.Auguston, "RIGAL - a programming language for compiler writing", Lecture Notes in Computer Science, Springer Verlag,
vol.502, 1991, pp.529-564.

[3] M.Auguston, "Programming language RIGAL as a compiler writing tool", ACM SIGPLAN Notices, December 1990, vol.25, #12,
pp.61-69

[4] M.Auguston, A.Delgado, Iterative Constructs in the Visual Data Flow Language, in Proceedings of I[EEE Symposium on Visual
Languages, Capri, Italy, 1997, pp.152-159

[5] E.Baroth, C.Hartsough, Visual Programming in the Real World, in Visual Object-Oriented Programming, Concepts and Environ-
ments, (ed. M.Burnett, A.Goldberg, T.Lewis), Manning 1995, pp.21-42

[6] D.Batory, Gang Chen, E.Robertson, Tao Wang, Design Wizards and Visual programming Environments for GenVoca Generators,
IEEE Transactions on Sofiware Engineering, Vol. 26, No 5, May 2000, pp.441-452

[7] R.Bird, T. Scruggs, M. Mastropieri ,Introduction to Functional Programming, Prentice Hall, 1998

{8] P.T.Cox, F.R.Gilles, T. Pietrzykowski, "Prograph", in Visual Object-Oriented Programming, Concepts and Environments, (ed.
M.Burnett, A.Goldberg, T.Lewis), Manning 1995, pp.45-66

[91 K.Czamecki, U.Eisenecker, Generative Programming, Methods, Tools, and Applications, Addison Wesley, 2000, pp.832, ISBN 0-
201-30977-7

[10] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A Complete, Flexible Compiler Construction System,
Communications of the ACM, 35(2):121-131, February 1992.

[11] J. Levine, T.Mason & D.Brown, lex & yacc, 2nd Edition, O’Reilly, 1992
[12] Reasoning Systems, “Refine User’s Guide”, Palo Alto, 1992
[13] The Vienna Development Method: The Meta-Language, D. Bjorner et al, eds, LNCS 61, Springer 1978

Appendix A. Syntax of MicroLisp language and an example of a program

Program ::= Function-definition* '?' Goal-Expression

Goal-Expression ::= Expression

Function-definition ::= ' ('DEFINE' ('Function-name Parameter-name*')' Expression ')

Expression ::= Integer | Parameter-name |'(' SimpleExpression ')’

SimpleExpression ::= BinOperation Expression Expression | UnOperation Expression |
Function-name Expression* |COND Branch + | READ_NUMBER

Branch::= ' ('Expression Expression ')'

BinOperation ::= ADD | SUB | MULT | DIV | MOD | EQ | LT |GT | AND | OR

25

UnOperation ::= MINUS | NOT
Function-name ::= Identifier
Parameter-name ::= Identifier
Example of a MicroLISP program.
(DEFINE (gcd x ¥y)
(COND (EQ x y) x)

((GT xvy) (ged (SUBxyYy) y))

{ 1 (ged x (SUByx)))))
? {gecd (READ NUMBER) (READ_NUMBER))

Appendix B. Type definitions for MicroLisp -> C compiler

message:: [char]
program:: (func_def* expr)| NULL
attribute func_tab: [id]

func_def:: id id* expr

expr:: number | id | (op expr expr)| (op expr)|read_num | cond | function-call

function-call:: id expr*

cond:: (expr expr)*

default mappings
#prog: [char] -> prog
#gen_program: prog -> C-HeaderFile, C-CodeFile
#gen-function-prototype: Func-def -> C-func-prototype
#gen—function-def: Func-def -> C-func-definition
#pretty print_prog: prog -> [char]

This is a sketch of a (over)simplified version of C abstract syntax.
C_CodeFile:} include-statement * C-func-definition +
C_HeaderFile:: include-statement C-func-prototype *
C_func_prototype:: C-type func-name C-type *

C-type:: id
C_func_definition::
C expr::

Default mappings include parsing rules and pretty-printing rules (abstract syntax to text mappings).

26

A Software Agent Framework for Distributed Applications”

Jun Ge, Boon Kwang Kin, Valdis Berzins
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943, USA
Email: {gejun, berzins}@cs.nps.navy.mil, bkkin@nps.navy.mil

Abstract

Software wrapper and glue technology is used to build the
architecture for distributed systems. This paper proposes
a simple framework using agents to act as interfaces
among processes interacting and cooperating to support
the wrapper-glue architecture. These agents encapsulate
the implementation details and make the network
transparent to the running processes. The proposed
framework is built on JINI infrastructure and uses Linda
TupleSpace type model of communication mechanism for
processes to interact with one another. The agent
interface is written in Java programming language with
two language wrappers, C Library wrapper and ActiveX
Component wrapper to Support processes Wwritten in
multiple languages including Java, C++/C, Ada and
Visual Basic. The agents can run on platforms with JVM
support. This agent framework serves in the development
of distributed systems as the *glue” among components
for communications. Test examples implemented in
various languages are provided. :

Key words? wrapper and glue, agent, distributed system,
JINI, software wrapper

1. Introduction

In the last few years, the computing landscape has
changed dramatically, as more devices such as hand
phones, PDAs (Personal Device Assistance) and internet
terminals, become network-connected, and as more
companies depend on the Internet to operate and
communicate; distributed applications (one that involves
multiple processes and devices) will become the natural
way we build systems, while the standalone desktop
applications will become out-dated and less commonly

built.

Distributed applications offers many benefits compare to
standalone applications such as gain in performance,
better scalability, resource sharing, fault tolerance and
availability. Despite their benefits, distributed
applications are difficult to design, build and debug. The
distributed environment introduces many problems that
are not concerns when writing standalone applications.

. sophisticated

Some of these problems are heterogeneity, latency, partial
failure, synchronous and coordination.

Rewriting legacy software to run in a distributed
environment tends to be prohibitively expensive and
complex. Many of this legacy software are expensive
investment developed over many years, replacing them
with new designs is usually not easily justifiable in term
of cost and resource allocation. Although, the only way to
keep such legacy software useful is to incorporate them
into a wider cooperating community in which they can be
exploited by other pieces of software, this tends to be very
complex in software design.

Recently, the techniques to “glue” multiple processes
running in a heterogeneous environment range from low
level sockets and messaging techniques to more
technologies object resource broker
(CORBA, DCOM). Many of these techniques either
require developers to perform significant work in
constructing the communication mechanisms or need
developers to have a good knowledge of the interface
details before designing. Hence, “glue” pieces of
processes are a difficult task and require skillful
designers.

Existing technologies for distributed system design
include these models, namely client/server model and

distributed object model.

The client/server model contains a set of server processes;
each one acting as a resource manger for a collection of
resources of a given type such as database server, file
server, print server. All shared resources are held and
managed by the server processes. Beside server processes,
it also contains a collection of client process; each one
performs a task that requires access to some shared
hardware and software resources. The client/server model
is a form of distributed computing in which the client
communicates with the server for the purpose of
exchanging or retrieving information. Both the client and
server usually speak the same language (protocol) to
communicate. The major problem with client/server
model is that the control of individual resource is
centralized at the server; this could create a potential

* This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and

40473-MA.

27

bottleneck and a single point of failure. Moreover, to
improve performance and cater to increasing number of
clients, implementations of similar functions are usually
replicated multiple servers. On the other hands, the
centralized of resources at a single location greatly
simplifies the management of these resources. The
client/server model can be implemented in various ways.
Typically, it is done using low-level sockets, remote
procedure calls or high-level message oriented
middleware such as message queue.

A distributed object-based system is a collection of
objects that isolates the requestor of services from the
providers of services (servers) by - a well-defined
encapsulating interface. Clients are isolated from the
implementation of services as data representations and
executable code. In distributed object model, a client
sends a message to an object, which in turn interprets the

- message to decide what service to perform. This service

could be performed either through the object or a broker.
Distributed object systems such as CORBA, DCOM, and
Java RMI provide the infrastructure for supporting remote
object activation and remote method invocation in a
client-transparent way. A client program obtains a pointer
(or a reference) to a remote object, and invokes methods
through that pointer as if the object resides in the client's
own address space. The infrastructure takes care of all the
low-level issues such as packing the data in a standard
format for- heterogeneous environments (i.e., marshaling

 and unmarshaling), maintaining the commumcatlon___
endpoints for message sending and receiving, and

dispatching each method invocation to the target object.
Among all the different vendors for distributed object
systems, CORBA is the most widely supported standards.
Its advantages are platform independence, open industry
standards that contains over 750 industry members.

Jini is one of a large number of distributed systems
architectures, including industry-pervasive system such as
CORBA and DCOM. It is distinguished by being based
on Java programming language, and deriving many
features that leverage on the capabilities that this language
provides, like object-oriented programming, code
portability, RMI (Remote Method Invocation), network
support and security.

Some of the features Jini Technologies offers include
enabling users to share services and resources over a
network, providing easy access to resources anywhere on
the network while allow the network location of the user
to change, and simplifying the task of building,
maintaining, and altering a network of devices, software,

and users.

Jini technology consists of a programming model and a

runtime infrastructure. The programming model helps
designer build reliable distributed systems, as a federation

28

of services and client programs. The runtime
infrastructure resides on the network and provides
mechanisms for adding, subtracting, locating, and
accessing services as the system is used. Services use the
runtime infrastructure to make themselves available when
they join the network. A client uses the nmtime
infrastructure to locate and contact desired services. Once
the services have been contacted, the client can use the
programming model to enlist the help of the services in
achieving the client's goals.

Tuple Space model was first conceived in the mid-1980 at
Yale University by professor David Gelernter" under a
project called Linda. Tuples are typed data structures.
Collections of tuple exist in a shared repository called a
tuple space. Coordination is achieved through
communication taking place in a tuple space globally
shared among several processes; each process can access
the tuple space by inserting, reading or withdrawing
tuples.

In this model, the programmer never has to be concerned

- with or program explicit message passing constructs and

never has to manage the relatively rigid, point-to-point
process topology induced by message passing. In contrast,
coordination in Linda is uncoupled and anonymous. The
first means that the acts of sending (producing) and
receiving (consuming) data are independent (akin to
buffered message passing). The second means that
process 1dent1ues are ummportant and, in particular, there
is no need to “hard wire" them into the code.

Software wrapping is a technique in which an interface is
created around an existing piece of software, providing a
new view of the software to external systems, objects, or
users. Wrapping can be accomplished at multiple levels:
around data, individual modules, subsystems, or entire
systems. There is not standard specifically for wrappers.
Wrappers can be used to interface legacy code to
standardized architectures. For example, IDL is
implemented via tools that automatically generate
wrappers to interface to CORBA.

This paper tries to integrate the effort on both JINI
technology and software wrapping method in rapid
prototyping practice P, A simple framework is proposed
by using software acrents to act as interfaces among
various processes that interact and cooperate in
distributed environment. It shiclds developers from the
underlying dynamic and complex network environment,
offers developers a simple set of APIs (Application
Program Interface) to build distributed applications
without worry about their platform and programmm
languages, and presents exiting software a easier way to
interact and cooperate with other applications in
heterogeneous environment. Therefore, the proposed
agent framework becomes a concrete implementation for

glue library in wrapper and glue architecture. Session II
presents an overview of the proposed framework and a
simple description of its features and underlying design.
The language wrapper design for the framework is
introduced in Session IIl. Session IV gives a test-bed
example of using the agent frame in multiple language
wrappers. :

2. Design

An overview of our framework is given in this session. It
also describes the underlymg design and the features of
our agents.

The proposed framework builds on JINI infrastructure
and uses JINI network technology to simplify the task of
building and maintaining reliable distributed systems
(Figure 1). This technology consists of a well-defined
programming model, allowing us to easily create our own
service and leverage on services already built to support
JINI infrastructure. Using this programming model, we do

=2

b Laptop computer

not have worry about the low-level communication
protocol. Client processes can dynamically locate and
access services held in the JINI community using its
runtime infrastructure, even if they do not know their host
URL addresses.

The framework uses a Linda TupleSpace model type of
communication mechanism for inter-processes
communications. Processes are loosely coupled, rather
than through direct communication, they interact in a
globally shared space - repository service (provides by
JavaSpace Service), through share variables - entries.
Being loosely coupled, processes need not be physically
connected all the time and do not have to worry about the
point-to-point topology induced by message passing.
Several processes residing on same machines or om
“different machines . can access the repository
simultaneously. They interact among each other by means
of reading, writing or consuming entries stored in the
repository service.

Personal Computer
1

S| cient |5
2' Module }5

uafy’

g /“"\,f ~ “‘.
i i
Network e
...’.‘- e
]
B o
™ ,.-'" - | - — |_
. Servers
: e.g Database
. Rule Base Engine

Semoe .
Sermvi ~ Agent .
Code Java Space Se?'iric'e»
Service it
Repositol L

Services

ransacbon

Figure 1. An example of a distributed application using the agent framework

Repository service is a shared, network-accessible depot
for entries storage. It behaves like a lightweight relational
database, where agents acting on behalf of their processes
can store, retrieve and query entries stored in it. Unlike
database, where users construct Structured Query
Language (SQL) statements to query records; agents use
pre-constructed templates, defined in our framework, to

match entries store in the repository; only entries that
match exactly the data types and fields defined in the
template are retuned by the repository service.

Entries are collection of values or objects place in

repository service by .coordinating processes for
information sharing. Before a process can start operating

29

on an entry, it first has to declare the entry, identifying by
a unique name and an entry type, with its agent; just like
variables declaration in programming techniques. The
entry type varies from simple primitive types (like
integer, float, double and etc) to more complex types (like
queue, stack, list and -etc), where process can manage
entries as groups. The entry, upon declaration, is assigned
an entry handler to serve operations for accessing the
repository service.

Entry handler is responsible for carry out operations
pertaining to a declared entry. There are many kinds of
entry handlers, each one is associated to an entry type and
has methods designed specifically to handle that
particular entry type. Methods that are common in all
handlers are: read, write, take, update and notify methods,
process mainly use them for manipulating entries store in
repository service. Each entry handler consists of a set of
attributes that determine how it carries out its operations.
Many of them can be overwritten, after entry declaration,
by processes to meet different application needs. For
instance, an entry-leasing attribute, which determine the
validity of the entry process store in repository, can be
used a real-time application to specify the deadline of
information, preventing the receipts from accessing
obsolete information, which sometime can be more
damaging than not have any.

Establishing a session with agent service is done in two

. simple steps: first locate the service and then perform a _

login registration. If process knows the network address
where agent service is located, process can bypass the
search procedures. Searching for services in JINI network
is done using multicast protocol - agent inserts a package
into a network and wait for lookup services to respond, a
lookup service is a facility where services publish their
services. The lookup services, upon receiving the request
package, response by returning a list of service items,
each item describes its service properties and functions.
Agent search through the list, comparing their service
attributes with those of the agent service. After it has
determined a match, it proceeds to establishing a
connection follow by service registration, providing a
valid login ID and a password to the agent service.

Below is a summary of features the framework provides,

v A simple and yet comprehensive interface that
allow multiple processes to get connected and
interact with one another in a distributed
environment. .

v Processes can be written in Java, Visual Basic,
C/C++, or Ada; two agent wrappers are included,
ActiveX wrapper and a C library wrapper.

v" Processes are loosely coupled; they need not be
physically connected all the time and do not have

to worry about the point-to-point topology
_ induced by message passing.

v’ Several processes residing on same or different
machines can access the repository service and
retrieve data simultaneously in a reliable manner.

v' Agent Service provides authentication and
control mechanism to manage processes using its
services. i

v' Avoid the needs to create and manage
remote/virtual classes (e.g. stubs and skeletons in
RMI and CORBA implementations)

¥ Provide callback mechanism that invokes user-
defined methods when conditions are met.

v’ Support transaction, enforcing consistency over a
set of entry operations

v Support leasing, preventing resources from
growing out of bound.

3. Language Wrappers

There are many compelling reasons for the agent to
support a wider variety of programming langnages beside
Java language. Some of these reasons are software reuse,
integration with legacy code, leveraging on tools that are
not available for Java language, and performing low low-
level activities such as hardware interface.

Two agent wrappers, ActiveX Component Wrapper and
Native C Library Wrapper, are implemented. ActiveX

. Component Wrapper allows our agent to be encapsulated
as objects in Visual Basic, Visual C++ or Microsoft

Office applications running in Window platform, whereas

‘Native C Library Wrapper allows our agent to be bind

together with native languages such as Ada, C and C++.

The wrapper modules consist of two separate
components: an ActiveX wrapper and C Library wrapper
(Figure 2). An ActiveX wrapper embedded the agent as
object such that it can be call by process written in Visual
Basic, Visual C++ or Microsoft Office application in
window platform environment. C Library wrapper allows
the agent to be bound together with processes written
using machine dependents languages like C, C++ or Ada.

The implementation of the ActiveX Wrapper was done
using a packager, an ActiveX Packager for Java Bean,
that come along with JVM plug-in provided by Sun
MicroSystem. This packager automatically generates the
wrapper for any Java bean by going through sequence of
pre-compiling, Two files are eventually produced after the
process, an OCX (OLE Control Extension) and TLB
(Type LiBrary). To make the OCX available to the
window environment, developers have to explicitly
register them with the window registry. ‘

_]
4

C++
Process

[I ueby

N

Ada %’

Process E-28
Figure 2.

Together with the Java Bean Bridge and JVM (Java
Runtime Environment), any method calls on this OCX
component will marshaled over the bridge and gets
executed in the JRE memory space; the return for the
function is unmarshalled by the bridge and given back to
the OCX component. . i
~The C Library Wrapper was build using JNI (Java Native
Interface) .APIs and the building process is more
complicated and tedious compare to implementing the
ActiveX Wrapper. We have to map every Java types to C
use in agent interfaces, create corresponding interfaces in
C language for every methods defined in the agent
interfaces, and manage the memory resources to prevent
memory leak.

4. Example of Language Wrappers

Three simple test programs are created, written in a
different language, to test the configuration of services

and client processes. These three programs serve as a-

distributed system to share information. Figure 3a to 3¢
show the graphical user interfaces of these test programs:
a Java GUI, Visual Basic GUI and C GUI respectively.
These test programs has implemented most of the
commonly used functions descript in our framework.
Besides, using them for testing the setup, they also
provide another source for developers to understand how
some of the features descript in our framework works.

Once the JINI services (includes our agent service) are
started, run the test programs on separate machines, these
machines must share a common network. Next, update the
agent setting, by overwriting the fields under “Agent
Setting” header, if the setting varies from our defaults.
Following that, press the “initAgents” button, it will show

Process

Java

Visual
Basic
process

i

Visual C++
process

AT

P

——————

Agent wrappers

a message “agent connected” if it successful with agent
service. Declare a new entry, with same entry name and
of same type, on both machine using those buttons locate
on the lower left-hand panel.

B2 coa0r S0y Lewt Brncts

Figure 3a. Java i,anguage ;emion Test Eencﬁm

sravad
1% Ak

TR 38 14
XE LB RME 19 5234,

Figure 3¢. C Lénguage version Test Bench’
5. Conclusions

The proposed agent framework with the language
wrappers focuses on the high-level architectures and
process interfaces. It ensures that the design is scalable
and process can be written in a variety of programming
languages by designing a commorn set APIs and building
wrappers for non-Java processes. The framework can be
used in various domains. The implementation has been
chosen to build on top of JINI/JavaSpace. It provides the
following benefits for distributed system design.

(1) It avoids the need to create or to manage the

. remote/virtual classes (e.g. stubs and skeletons in

RMI and CORBA. implementations)
(2) The development of dynamic and distributed

applications is relatively easy. Programmers do not
have to manipulate remote accesses to objects/classes
(such as the stubs and skeletons in Sun’s RMI or the

virtual objects.

32

~[3] Cloudscape,

(3) It eliminates the process of encoding and decoding
process for the case of message passing.

(4) It is easy to integrate with existing software
components. _

(4) It provides good scalability. Currently two services,
transaction service and repository service, are unsed,
while new services can easily be added, such as
database connection/query.

(5) It enables a callback mechanism that invokes user-
defined methods when conditions are satisfied.

With these advantages, the proposed agent framework
plays as the communication layer glue in the software
wrapper and glue technology. It provides a concrete

" implementation practice for glue library for higher-level

wrapper to call. The whole architecture is used in rapid
prototyping architecture for heterogeneous distributed
systems.

References

[11 D.Gelemter, Generative Communication in Li'nda,
ACM Trans. Programming Languages and
Systems, 7(1), Jan.1985, pp. 80-112

[21 Lugi, “Computer-aided prototyping for command
and control system using CAPS”, IEEE Software,
9(1), Jan. 1992, pp 56-67

Cloudscape Java

http://www.cloudscape.com

[4] Bill Joy, The Jini Specifications, Addison Wesley,
Inc., 1999

databq;e,

JAVA Wrappers for Automated Interoperability

Ngom Cheng, Valdis Berzins, Luqi, and Swapan Bhattacharya

Department of Computer Science
Naval Postgraduate School
. Monterey, CA. 93943 USA
{cheng, berzins, luqgi, swapan}@cs.nps.navy.mil

Abstract. This paper concentrates on the issues related to implementation of
- interoperability between distributed subsystems, particularly in the context of .re-
engineering and integration of several centralized legacy systems. Currently, most
interoperability techniques require the data or services to be tightly coupled to a
particular server. Furthermore, as most programmers are trained in designing stand-
alone application, developing distributed system proves to be time-consuming and
difficult. Here, we addressed those concerns by creating an interface wrapper model
that allows developers to treat distributed objects as local objects. A tool that
automatically generates the features of Java interface wrapper from a specification
language called the Prototyping System Description Language has been developed

based on the model.

1 Introduction

Interoperability between software systems is the ability to excharige services from -

one system to another. In order to exchange services, commands and data are relayed
from the requesters to the service providers. Current business and military systems
are typically 2-tier or 3-tier systems involving clients and servers, each running on
different machines in the same or different locations. Current approaches for n-tier
systems have no standardization of protocol, data representation, invocation
techniques etc. Other problems related to interoperability are the implementation of
distributed systems and the use of services from heterogeneous operating
environments. These include issues concerning sharing of information amongst
various operating systems, and the necessity for evolution of standards for using data
of various types, sizes and byte ordering, in order to make them suitable for
interoperation. These problems ma.ke interoperable apphcahons difficult to construct

and manage.

1.1 Current State-of-the-Art Solutions

Presently, the solutions attempting to address these interoperability problems range
from low-level sockets and messaging techniques to more sophisticated middleware
technology like object resource brokers (CORBA, DCOM). Middleware technology
uses higher abstraction than messaging, and can simplify the construction of
interoperable applications. It provides a bridge between the service provider and

S. Bhalla (Ed.): DNIS 2000, LNCS 1966, pp. 4564, 2000.
© Springer-Verlag Berlin Heidelberg 2000 33

N. Cheng et al.

requester by providing standardized mechanisms that handle communication, data
exchange and type marshalling. The implementation details of the middleware are
generally not important to developers building the systems. Instead, developers are
concerned with service interface details. This form of information hiding enhances
system maintainability by encapsulating the communication mechanisms and
providing stable interface services for the developers. However, developers still need
to perform significant work to incorporate the middleware’s services into their -
systems. Furthermore, they must have a good knowledge of how to deploy the
middleware services to fully exploit the features provided.

Current middleware approaches have another major limitation in design - the data and
services are tightly coupled to the servers. Any attempt to parallelize or distribute a
computation across several machines therefore encounters complicated issues due to
this tight control of the server process on the data. Tuning performance by
redistributing processes and data over different hardware configurations requires
much more effort for software adjustment than system administrators would like.

1.2 Motivation

Distributed data structures provide an entirely different paradigm. Here, data is no
longer coupled to any particular process. Methods and services that work on the data
are also uncoupled from any particular process. Processes can now work on different
pieces of data at the same time. Until recently, building distributed data structures
together with their requisite interfaces has proved to be more daunting than other
conventional interoperability middleware techniques. The arrival of JavaSpace has
changed the scenario to some extent. It allows easy creation and access to distributed
objects. However, issues concerning data getting lost in the network, duplicated data
items, out-dated data, external exception handling and handshaking communication
between the data owner and data users are still open. Developers have to devise ways
to solve those problems and standardize them between applications.

13 Proposal

The situation concemning interoperability would greatly improve if a developer
working on some particular application could treat distributed objects as local objects
within the application. The developers could then modify the distributed object as if it
is local within the process. The changes may, however, still need to be reflected in
other applications using that distributed object without creating any problems related
to inconsistency. The current research aims at attaining this objective by creating a
model of an interface wrapper that can be used for a variety of distributed objects. In
addition, we seek models that can automate the process of generating the interface
wrapper directly from the interface specification of the requirement, thereby greatly

improving developers’ productivity.

A tool, named the Automated Interface Codes Generator (AICG), has been developed
to generate the interface wrapper codes for interoperability, from a specification
language called the Prototype System Description Language (PSDL) [9]. The tool

34

JAVA Wrappers for Automated Interoperability

uses the principles of distributed ‘data structure and JavaSpace Technology to
encapsulate transaction control, synchronization, and notification together with

lifetime control to provide an environment that treats distributed objects as if there -

were local within the concerned applications.

2 Reﬁew of Previous Works

A basic idea for enhancing mteroperablhty is to make the network transparent to the

application developers. Previous approaches [1] include 1) Building blocks for
* interoperability, 2) Architectures for unified, systematic interoperability and 3)
Packaging for encapsulating interoperability services. These approaches have been
assessed and summerized using Kiviat graphs by Berzins [1] with various weight
factors. The Kiviat graphs give a good summary of the strong and weak points of
various approaches. ORBs and Jini are currently among the pronusmg technologies

for interoperability.

2.1 ORB Approachés

‘There are however, some concerns with the ORB models. Sullivan [13] provides a
more in-depth analysis of the DCOM model, highlighting the architecture conflicts
between Dynamic Interface Negotiation. (how a process queries a COM interface and
its services) and Aggregation (component composition mechanism). Interface
negotiation does not function properly within the aggregated boundaries. This
problem arisés because interacting components share an interface. An interface is
shared if the constructor or QueryInterface functions of several components can return

. a pointer to it. QueryInterface rules state that a holder of .a shared interface should be"
able to obtain interfaces of all types appearing on both the inner and outer

components. However, an aggregator can refuse to prov:de interfaces of some types
appearing on an. inner component by hiding the inner component. Thus,
QuerylInterface can fail to work properly with respect to delegation to the inner

mterface

Hence, for the ORB approaches, detailed understanding of the techniques is required
to design a truly reliable interoperable system. Programmers however, are trained
mostly on standalone programming techniques. Adding specialized network
programming models increases the learning as well as development tme, with
occasional slippage of target deadlines. Furthermore, bugs in distributed programs are
harder to detect and consequences of failure are more catastrophic. An abnormal

program can cause other programs to go astray in a connected distributed environment

[9], [12].

2.2 Prototyping

The demand for large, high. quality systems has increased to the point where a
quantum change in software technology is needed [9]. Requirements and

35

W ".-w,um'\l'.v:.uazi:..'éa“..::..:"Mf;..‘;‘;n‘iL‘:-':u'j-;!".'}.-.'z'ah.ﬁl}mﬁﬁ;ﬁiﬂii g LW AT T A AT e g e e e s e v oen m e

N. Cheng et al.

specification errors are a major cause of faults in complex systems. Rapid
prototyping is one of the most promising solutions to this problem. Completely
automated generation of prototype from a very high-level language is feasible and
generation of skeleton programming structures is currently common in the computer
world. One major advantage of the automatic generation of codes is that it frees the
- developers from the implementation details by executing specifications via reusable

components [9].

In this perspective, an integrated software development environment, named
Computer Aided Prototyping System (CAPS) has been developed at the Naval
Postgraduate School, for rapid prototyping of hard real-time embedded software
systems, such as missile guidance systems, space shuttle avionics systems, software
controllers for a variety of consumer appliances and military Command, Control,
Communication and Intelligence (C3I) systems [11]. Rapid prototyping uses rapidly
constructed prototypes to help both the developers and their customers visualize the
proposed system and assess its properties in an iterative process. The heart of CAPS is
the Prototyping System Description Language (PSDL). It serves as an executable
prototyping language at a specification and software architecture level and has
special features for real-time system design. Building on the success of computer
aided rapid prototyping system (CAPS) [11], the AICG model also uses PSDL for
specification of distributed systems and automates the generation of interface codes
with the objective of making the network transparent from the developer’s point of

. view.

' 2.3 Transaction Handling

° Building a networked application is entirely different from building a stand-alone
system in the sense that many additional issues need to be addressed for smooth
functioning of a networked application. The networked systems are also susceptible to
partial failures of computation, which can leave the system in an inconsistent state.

Proper transaction handling is essential to control and maintain concurrency and
consistency within the system. Yang has examined the limitation of hard-wiring
concurrency control into either the client or the server. He found that the scalability
and flexibility of these configurations is greatly limited. Hence, he presented a
middleware approach: an external transaction server, which carries out the
concurrency control policies in the process of obtaining the data. Advantages of this
approach are 1) transaction server can be easily tailored to apply the desired
concurrency control policies of specific client applications. 2) The approach does not
require any changes to the servers or clients in order to support the standard
transaction model. 3) Coordination among the clients that share data but have
different concurrency control pohcxes is poss1ble if all of the clients use the same

transaction server.

The AICG model uses the same approach by using an external transaction manager
such as the one provided by SUN in the JINI model All transactions used by the

- clients and servers are created and overseen by the manager.

36

JAVA Wrappers for Automated Interbperability

3 The AICG Interaction Model

The AICG model encabsulates some of the features of JavaSpace and Jini to provide
a simplified ways of developing distributed applications.

3.1 Jini Model

The Jini model is designed to make a service on a network available to anyone who

can reach it, and to do so in a type-safe and robust way [4]. The ability of Jini model

is based on five key concepts: (1) Discovery is the process used to find communities

on the network and join with them. (2) Lookup governs how the code that is needed to
use a particular services finds its way into participants that want to use that service.

(3)Leasing is the technique that provides the Jini self recovering ability. (4) Remote

events allow services to notify each other of changes to their state (5) Transactions

ensure that computaﬁons of several services and their host always remain in “safe”

State.

The Jini model was designed by Sun Microsystems with simplicity, reliability and
scalability as the focus. Its vision is that Jini-enable devices such as PDA, cell phone
or a printer, when plugged into a TCP/IP network, should be able to automatically
detect and collaborate with other Jini-enabled devices.

The powerful features of Jini provide a good groundwork for developing
interoperability systems. However, the lack of automation for creating interface
software and the need for developers to fully understand the Jini Model before they
can use it created the same problems for developers as other interoperability’

approaches.

3.2 The JavaSpace Model

The JavaSpace model is a high-level coordination tool for gluing processes together in
a distributed environment. It departs from conventional distribution techniques using
_message passing between processes or invoking methods on remote objects. The
technology provides a fundamentally different programming model that views an
application as a collection of processes cooperating via the flow of freshly copied
objects into and out of one or more spaces. This space-based model of distributed
computing or distributed structure has its roots in the Linda coordination language [3]

developed by Dr. David Gelemter at Yale University.

3.2.1 Distributed Data Structure and Loosely Coupled Programming

Conceptually a distributed data structure is one that can be accessed and manipulated
by multiple processes at the same time without regard for which machine is executing
those processes. In most distributed computing models, distributed data structures are
hard to achieve. Message passing and remote method invocation systems provide a
good example of the difficulty. Most of the systems tend to keep data structure behind
one central manager process, and processes that want to perform work on the data

37

N. Cheng et al.

structure must “wait in line” to ask the manager process to access or alter a piece of
data on their behalf. Attempts to parallelize or distribute a computation across more
than one machine face bottlenecks since data are tightly coupled by the one manager
process. True concurrent access is rarely achievable.

Distributed data structures provide an entirely different approach where we uncouple
the data from any particular process. Instead of hiding data structure behind a
manager process, we represent data structures as collections of objects that can be
independently and concurrently accessed and altered by remote processes. Distributed
data structures allow processes to work on the data without having to wait in line if

there are no serialization issues.

3.2.2 Space _ ‘
A space is a shared, network-accessible repository for objects. Processes use the

repository as a persistent object storage and exchange mechanism Processes perform
simple operations to write new objects into space, take objects from space, or read
(make a copy of) objects in a space. When taking or reading objects, processes use a
simple value-matching lookup to find the objects that matter to them. If a matching
object is not found immediately, then a process can wait until one arrives. Unlike
conventional object stores, processes do not modify objects in the space or invoke
their methods directly. To modify an object, a process must explicitly remove it,
"update it, and reinsert it into the space. During the period of updating, other processes
requesting for the object will wait until the process writes the object back to the space. -
This protocol for modification ensures synchronization, as there can be no way for
more than one process to modify an object at the same time. However, it is possible
for many processes to read the same object at the same time.

Key Features of JavaSpace: B |
e Spaces are persistent: Spaces provide reliable storage for objects. Once stored in

the space, an object will remain there until a process explicitly removes it.

e Spaces are transactionally secure: The Space technology provides a transaction
model that ensures that an operation on a space is atomic. Transactions are
supported for single operations on a single space, as well as multiple operations
over one Or more spaces. o ' _

e Spaces allow exchange of executable content: While in the space, objects are just
passive data, however, when we read or take an object from a space, a local copy
of the object is created. Like any other local object; we can modify its public fields
as well as invoke its methods.

3.3 The AICG Approach

The AICG approach to interoperability has two parts. The first part is to develop a
model to completely hide the interoperability from the developers and the second part
of the approach is to design a tool that automates the process of integrating the AICG
model into the distributed application so as to aid the development process.

38

JAV A Wrappers for Automated Interoperability

L]

3.3.1 The AICG Model |
The AICG model is built on JavaSpace and Jini. It is designed to wrap around data

structures or objects that are shared between concurrent applications across a network.
The model gives the applications complete access to the contents of the objects as
though they were the sole owners of the data. Synchronization, transaction and error
ha.ndhno are built into the model, freeing the dcvelopers to concentrate on the actual

requirement of the applications.

AICG uses the JavaSpace Distributed Data Structure principles as the main
communication channel for exchange of services. The model also encompasses Jini
services like Transaction, Leasing and Remote Event. However, the difference is that
the model wraps the services provided by the JavaSpace and Jini and hide their usage
from the application. Developers are not required to understand the underlying
principles before they can use the model. They should however be aware of object
~oriented programming constraints such as no direct access to the attributes of an
object is allowed without going through the object methods.

The most common use of the AICG model is to encapsulate objects that are to be
shared. This form of abstraction has an advantage over direct use of a JavaSpace. The
JavaSpace distributed protocol for modification ensures synchronization by enforcing
that a process wishing to modify the object has to physically remove it from the space,
alter it and write it back to the space. There can be no way for more than one process
to modify an object at the same time. However, this does not prevent other processes
from overwriting the updated data. For example in an ordinary JavaSpace, the
programmer of Process A could spec1fy a “read” operatlon, followed by a *“‘write”
operation. This would resuit in 2 copies of the object in the Space. The AICG model
prevents this since the 3 basic commands are embedded into distributed objects that -
are automatically generated to conform to the proper protocol. All modifications on
the object are automatically translated to “take”, followed by “write” and all
operations that access the fields of the distributed object are translated to “read”.
These ensure that local data are up-to-date and serialization is maintained.

Although the basic idea of the AICG model is simple, it requires many supporting
features to make it work. Distributed objects may be lost if a process removes them
from the space and subsequently crashes or is cut off from the network. Similarly, the
system may enter a deadlock state if processes request more than one distributed
-object while, at the same time, holding on to distributed objects required by other
processes. Similarly, latency and performance are very different between local access
and remote access. Those issues should not be ignored in any interoperability
techniques, if the systems to be built using the techniques must be robust. ORB
techniques such as RPC and CORBA do not even consider performance and latency
as part of their programming model, they treat it as a “hidden” implementation detail
that programmer must unphc1tly be aware of and deal with while they preach that
accessing remote object is sumlar to accessing local object. _

The AICG model has a set of four supporting modules to handle those situations.

These modules provide transaction handling and user-defined latency to ensure
integrity of the updates, exception handling for reporting errors and failures without

39

.% N.Cheng et al.
crashing the system, a notification channel to inform the application of certain events,
and lease control for freeing up unused object during “house keeping”. The supporting

features are discussed in section 5.

3.3.2 The AICG Tool | :
The second part of the research aims at developing a tool that generates software

wrapper realizing the AICG model to aid the construction of distributed applications.
The tool is designed to generate interface wrappers for data structures or objects that
need to be shared, and is particularly useful for applications that can be modeled as
flows of objects through one or more servers. The tool allows the developers to use all
the features in the AICG model without the need to write complicated codes. This
enhances interoperability by making network and concurrent issues transparent to the

application developers.

The interface wrappers are -generated from an extension of a prototype description

language called Prototyping System Description Language (PSDL). The extended

Descnptwn language (PSDL-ext) expands property definitions that are specific only

to AICG model. .

Some of the salient features of the AICG model generated by the tool are:

e Distributed objects are treated as local objects within the apphcatmn process. The

© -application code need not depend on how the object is distributed, since the local

... object copy is always synchronous with the distributed copy.

e Synchronization with various -applications is automatically handled. Since the
AICG model is based on the space transaction secure model and all operations are -
atomic. Deadlock is prevented automatically within the interface and each object
has through transaction control. Any type of object can be shared as long as the
object is serializable. Any data structure and object can be distributed as loncr as it
obeys and implements the java serializable feature.

e Every distributed object has a lifetime. The distributed object lifetime is a penod
of time guaranteed by the AICG model for storage and distribution of the object.
The time can be set by developer.

e All write operations are transaction secure by default. AICG transactions are based
on the Atomicity, Consistency, Isolation, and Durability (ACID) features.

e Clients can be informed of changes to the distributed object through the AICG

- event model. A client applica'tion can subscribe for change notification, and when
the distributed object is modified, a separate thread is spawned to execute a

- callback method defined by the developer.

o The wrapper codes are generated from high-level descnptwe languages; hence,
" they are more manaceable and more maintainable. .

4 Types of Services

Services can be basic raw data, messages, remote method invocation, complex data
structures, or object with attributes and methods. The AICG model is suited for
exchange and sharing of complex data structures and objects. It can be tailored for -
raw data, messaging, and remote method invocation types of communication.

40

JAVA Wrappers for Autornated Interoperability

The AICG model uses the space as a transmission medium and hence loosens the tie.
between producers and consumers of services which are forced to interact indirectly
through a space. Thisis a significant difference, as loosely coupled systems tend to
‘be more flexible and robust. _ .

4.1 Overview of the PSDL Interface

Prototype System Desg:riptiqn Language (PSDL) provides a data flow notation
augmented by application-orientated timing and control constraints to describe a
system as a hierarchy of networks of processing units communicating via data streams
[1]. Data Streams carry values of abstract types and provide error-free communication
channels. PSDL can be presented in a semi-graphical form for easy specifying of the
specifications and requirements. An introduction to the real-time aspects of the PSDL

can be found in [1] and [2]. :

In PSDL, every computational entity such as an application, a procedure, a method or
a distributed system is represented as an operator. It is hierarchical in nature and each
operator can be decomposed to sub-operators and streams. Every operator is a state
machine. Its internal states are modeled by variable sets local only to this operator.
Operators are represented as circular icons in PSDL Graph, and triggered by data
stream or periodic timing constraints. When an operator is triggered, it reads one data
value from each input stream and computes the results if the execution guard or
constraint is satisfied. The results are placed on the output streams if the output guard
" is satisfied. . - '

Operators communicate via data streams. These data streams contain values that are
instances of an abstract data type. For each stream, there are zero or more operators -
that write data on the stream and zero or more operators that read data from that
stream. There are two kinds of streams in PSDL, dataflow and s